Tissue engineering of dental pulp on type I collagen
نویسندگان
چکیده
The purpose of this study was to regenerate human dental pulp tissues similar to native pulp tissues. Using the mixture of type I collagen solution, primary cells collected from the different tissues (pulp, gingiva, and skin) and NIH 3T3 (1 × 10 cells/ml/well) were cultured at 12-well plate at 37°C for 14 days. Standardized photographs were taken with digital camera during 14 days and the diameter of the contracted collagen gel matrix was measured and statistically analyzed with student t-test. As one of the pulp tissue engineering, normal human dental pulp tissue and collagen gel matrix cultured with dental pulp cells for 14 days were fixed and stained with Hematoxyline & Eosin. According to this study, the results were as follows: 1. The contraction of collagen gel matrix cultured with pulp cells for 14 days was significantly higher than other fibroblasts (gingiva, skin) (p < 0.05). 2. The diameter of collagen gel matrix cultured with pulp cells was reduced to 70.4% after 7 days, and 57.1% after 14 days. 3. The collagen gel without any cells did not contract, whereas the collagen gel cultured with gingiva and skin showed mild contraction after 14 days (88.1% and 87.6% respectively). 4. The contraction of the collagen gel cultured with NIH 3T3 cells after 14 days was higher than those cultured with gingival and skin fibroblasts, but it was not statistically significant (72.1%, p > 0.05). 5. The collagen gel matrix cultured with pulp cells for 14 days showed similar shape with native pulp tissue without blood vessels. This approach may provide a means of engineering a variety of other oral tissue as well and these cell behaviors may provide information needed to establish pulp tissue engineering protocols. [J Kor Acad Cons Dent 29(4):370-377, 2004]
منابع مشابه
Different isolation methods of dental pulp stem cells
Considering the ease of isolation and high expansion potential of pulp stem/progenitor cells isolated from wisdom and primary teeth they have been implicated as the most reliable autologous cell source in dental tissue engineering. Meanwhile, different isolation methods have remarkable impacts on the expansion potential of adult stem cells. In enzymatic digestion method extracted teeth as denta...
متن کاملInduction of type I collagen and osteocalcin in human dental pulp cells by retinoic acid.
Retinoic acid has been known to play a key role in the regulation of bone cell differentiation and function. The effects of retinoic acid on human dental pulp cells, which contain several characteristics similar to those of bone cells, has yet to be elucidated extensively. The effects of retinoic acid on human dental pulp cells in terms of type I collagen and osteocalcin induction were investig...
متن کاملPotential use of Dental Pulp Stem Cell in Laboratory Studies and Clinical Trials
Stem cell-based therapy has great potential in treating health conditions including cardiovascular, autoimmune, type I diabetes, neurodegenerative and bone and cartilage diseases also in spinal cord injuries, malformations and cancer. In addition to their potential use to treat systemic diseases, stem cell-based therapy also provides a powerful tool to treat oral and dental diseases such as cra...
متن کاملDental pulp stem cells: a new cellular resource for corneal stromal regeneration.
Corneal blindness afflicts millions of individuals worldwide and is currently treated by grafting with cadaveric tissues; however, there are worldwide donor tissue shortages, and many allogeneic grafts are eventually rejected. Autologous stem cells present a prospect for personalized regenerative medicine and an alternative to cadaveric tissue grafts. Dental pulp contains a population of adult ...
متن کاملBone tissue engineering using P-15 coated scaffolds and human dental pulp stromal cells
Introduction P-15 a fifteen residue synthetic peptide (GTPGPQGIAGQRGVV), is a structural analogue of the cell binding domain of Type 1 collagen [1]. P-15 adsorbed on anorganic bovine mineral (ABM-P15) scaffolds has been shown to enhance bone marrow stromal cell growth [2]. This study aimed to investigate the osteogenic potential of human dental pulp stromal cells (HDPSCs) in monolayer culture c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013